THE GRADED APPROACH IN THE MANAGEMENT OF DECOMMISSIONING WASTE IN FRANCE

Nicolas Solente - Andra
Contents

Introduction

Very Low-Level Waste
- Sizing the problem
- Improving disposal route
- New disposal route
- Alternative solutions

Low Level Long-Lived Waste
- Origin and inventory
- Specific disposal constraints
- Solutions?
Current situation in France:
- Disposal of VLLW and short-lived LLW in Andra’s surface facilities.
- Cigéo project for long-lived ILW and HLW.

Building a global approach of the management of all radwastes (and materials if reclassified into waste):
- Exhaustive with respect to waste inventory,
- Coherent with regard to safety and best environmental practice,
- Proportioned to waste harmfulness.
Harmfulness indicators are being elaborated in France to support Waste management strategy

Taking into account:

- Activity level
- Radioactive decay
- Radiotoxicity
- RN mobility
- Non radioactive harmfulness (on Man and the Environment)

LL-LLW: Distribution of non radiological harmfulness with regard to conventional waste regulation (Additional types of waste considered since 2016 are not taken into account)
Very Low-Level waste
VLLW
A significant part of decommissioning waste

Inventory of the decommissioning wastes to be disposed of in 2040
A saturation of regulatory capacity by 2025 ... which could be postponed to 2030

Volumes of VLLW delivered (cumulative since 2003, + forecasts)

... provided an extension of the currently authorized capacity to ≈ 900 000 m³, within the current available area
The CIRES VLLW facility

- Commissioned August 14th 2003
- Area: Total: 43 ha; disposal area: 28.5 ha
- Licensed disposal capacity: 650,000 m³
- >50% of the regulatory disposal capacity used
- Operating life: initially estimated at approximately 30 years
- Processing units: compaction units, solidification unit, package verification facility
Changes to disposal cell design

The technical capacity of the facility could be higher by about 40% than its presently licensed capacity.
The initial use of the disposal area

Initially 650,000 m3

Disposal area

Clay storage area
Clay storage area

Disposal area

Presently 650,000 m3

+ ~ 250,000 m3
Scenario in the continuation of the current scheme

- A new VLLW disposal facility to be commissioned around 2030
- A capacity of about 1 million m3
- Flow averaging 35,000 m3/an
Optimization of the volumes: The technical options studied

<table>
<thead>
<tr>
<th>Option</th>
<th>Potential for annual flows reductions to CIRES</th>
</tr>
</thead>
<tbody>
<tr>
<td>VALORISATION</td>
<td></td>
</tr>
<tr>
<td>Scrap metal</td>
<td>10 000 m3/y (on average)</td>
</tr>
<tr>
<td>Rubble</td>
<td>1 800 m3/y</td>
</tr>
<tr>
<td>VOLUME REDUCTIONS</td>
<td></td>
</tr>
<tr>
<td>Metals (fusion for densification)</td>
<td>12 000 m3/y (on average)</td>
</tr>
<tr>
<td>Incinération</td>
<td>2000 m3/y</td>
</tr>
<tr>
<td>Compaction</td>
<td>< 2000 m3/y</td>
</tr>
<tr>
<td>REORIENTATION</td>
<td></td>
</tr>
<tr>
<td>ALTERNATIVE DISPOSAL (simplified)</td>
<td></td>
</tr>
<tr>
<td>For VVLW</td>
<td>Up to 10 000 m3/y</td>
</tr>
</tbody>
</table>

Non-cumulative scenarios

Options to be assessed as to their technical, economic, environmental efficiency and to the social acceptability
Main conclusions

A technical capacity of 900 000 m³ for CIRES

- With a technical capacity of 900 000 m³, the CIRES can ensure the continuity of the acceptance of VLL wastes by requesting an extension of the regulatory capacity within the site area.
- Needs for additional disposal capacity by 2030 will range between 600,000 and 1,200,000 m³ according to the different scenarios studied.

Main issues

- Successfully recycle metallic waste, which can be dismantled without contamination above natural level, after melting.
- Quantify wastes with extremely low activity level, for which disposal at CIRES constitutes an "oversized" solution.

➔ A dialogue on the relevance of options with waste producers.
Low level Long-Lived Waste
Waste activities evolution

Average specific activity (Bq/g) vs Time (y)

- LL-ILW (Cigéo): ~ 75 000 m³
- LL-LLW > 250 000 m³
- SL-LLW (CSA): 1 000 000 m³
Towards a graded approach in waste management

The French RW inventory identifies a range of waste with hazards in between the waste that can be accommodated in existing surface disposal facilities and those intended for Cigéo:

Short lived LLW – disposed of on the surface (CSA)

- Limited inventory in long lived RN:
 - 41Ca : 0.12 TBq
 - 14C : 815 TBq

« Low level long-lived wastes »

- Moderate content in long lived RN:
 - 36Cl : 2,2 TBq
 - 41Ca : 2 TBq
 - 14C : 927 TBq

- Moderate specific activity (Bq/g):
 - 36Cl (Graphite) : de 29 à 260
 - 99Tc (Bitumes) : 800
 - 129I : 4
 - 79Se (Bitumes) : 1,67

- ILW to be disposed of in Cigéo

 - Specific activity (cladding and endpieces) (Bq/g):
 - 36Cl : 530
 - 99Tc : 6 330
 - 129I : 7,5
 - 79Se : 77

Eastern and Central European Decommissioning (ECED) - 2019
Towards a graded approach in LLW-LL management

• The French Act (2006) provides for a **shallow depth** disposal concept for **low level and long-lived waste**;

• There is no threshold to define a shallow depth in France.

 ◆ The Safety Guide issued by the French regulator (ASN) for **deep** geological disposal defines a 200 m depth threshold for such a facility with regard to isolation over very long periods.

IAEA definitions:

• **Near-surface** addresses depths up to a few tens of meters: 0-30m typically;

• The concept of “intermediate depth disposal” associated to ILW is no more considered as appropriate;

• The concept of “**geological disposal**” might be extended in the future to any underground disposal facility at a depth higher than “a few tens meters”.

Eastern and Central European Decommissioning (ECED) - 2019

Ce document est la propriété de l'Andra. Il ne peut être reproduit ou communiqué sans son autorisation expresse et préalable.
Towards a graded approach in waste management

- Technical and economical optimization of waste disposal routes
- Moderate specific activity not requiring deep disposal
- Content in long lived RN not compatible with CSA
- Disposal at a shallower depth

Safety
Cost
Technical solutions
Safety factors for defining an appropriate shallow depth and relating waste acceptance criteria

- **Time frame to be considered for long term safety functions**
 - Long term safety functions are available as long as the site specific geodynamic evolution does not significantly modify the configuration of the disposal system (via surface alteration processes, erosion, glaciation).

- **Isolation performance**
 - The isolation performance is directly connected to depth (IHI scenarios...)
 - Its suitability depends on the toxicity of RN and other substances in the waste and their concentration.

- **Containment performance**
 - The containment performance depends on:
 - site specific properties: permeability, hydraulic gradient, redox, retention, thickness of host formation, hydraulic conditions of outlets;
 - additional engineered barriers.
 - The needs for containment is a function of the types of radionuclides in the waste (their mobility in particular) and their amount.

- **Residual impact after loss of safety functions**
 - is a function of the decrease in the radiological content of the waste with time (half lives) and of concentrations.
2 construction methods at shallow depth

Solution 1
Open air

Solution 2
Underground

Alvéole de Stokage

Container de commande
Système de marinage

Roue de coupe
Tuyaux de lançage
Tunnelier
Bâti de poussée

Ce document est la propriété de l’Andra. Il ne peut être reproduit ou communiqué sans son autorisation expresse et préalable.
Range of shallow depths in clay

Open pit

U/G Digging
Defining long term management routes for LL-LLW is complex

- The French Regulator (ASN) considers that the Aube site will not be capable to accommodate all LL-LLW.

- The PNGMDR provides for new site screening in addition to the Aube site under survey.
 - A wider range of disposal concepts needs to be studied.

- Need to clarify the modalities of a graded safety approach in France:
 - What balance between isolation and containment?
 - What role for IHI scenarios?

 ➢ ASN safety guide is being updated
Thank you!

nicolas.solente@andra.fr