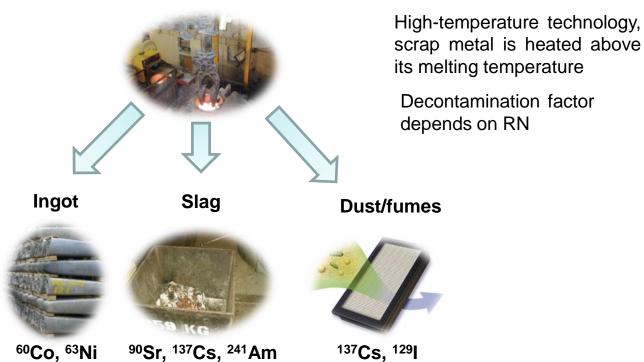

vüje

Content

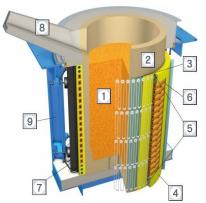
- 1. Introduction
- 2. Metal melting description
- 3. Melting of metallic RAW in SR
- 4. Methodology for clearance of ingots
- 5. Conclusion

Introduction



- Decommissioning is difficult long-term process
- III. and IV. stage of decommissioning of A1 NPP
- II. stage of decommissioning of V1 NPP
- Large amount of metallic RAW arises during decommissioning
- Suitable decontamination technology increases clearable metals into ENV

Metal melting description



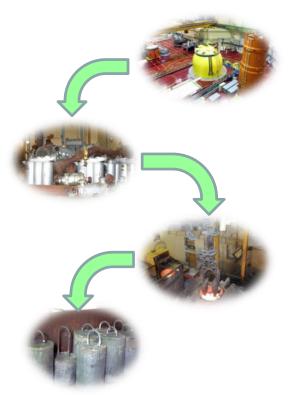
Metal melting description

- 1 Roztavený kov
- Keramický téglik
 Tepelná izolácia
 Obal so senzorickým káblom
- 5 Chladiaci okruh
- 6 Výhrevná indukčná cievka
- 7 Kotva transformátora
- 8 Hubica pre odlievanie 9 Oceľový plášť

Source:	QUADE,	U.,	MULLER,	W.:	Recycling	g of
radioactiv	ely contam	inated	scrap from	n the n	nuclear cycle	e and
spin-off	other appli	cation,	Revisita	de r	netalurgia,	Rev.
Metal: Madrid Vol. Extr. (2005), p. 23-28						

RN	Ingot [%]	Slag [%]	Dust, fumes [%]
⁶⁰ Co	88	11	1
⁶³ Ni	90	10	0
⁹⁰ Sr	1	97	2
⁹⁴ Nb	81	17	2
⁹⁹ Tc	99	0	1
¹²⁵ Sb	95	4	1
^{134,137} Cs	<1	60	40
¹⁵² Eu	4	95	1
^{239,40} Pu	1	97	2
²⁴¹ Am	1	97	2

vüje


Melting of metallic RAW in SR

A1 NPP– III. a IV. decom. stage

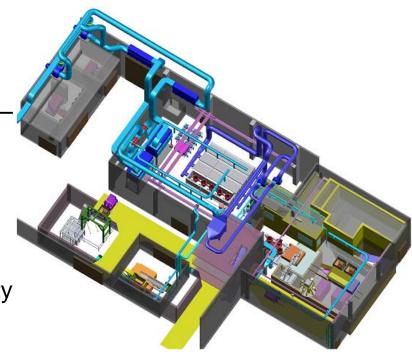
¹³⁷Cs ⁹⁰Sr ²⁴¹Am

V1 NPP- II. decom. stage

⁶⁰Co

vüje

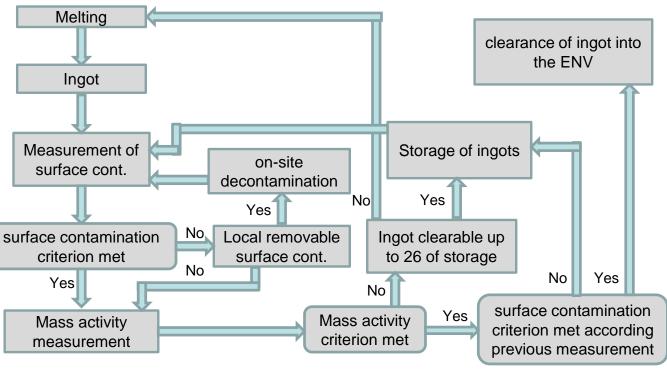
Melting of metallic RAW in SR



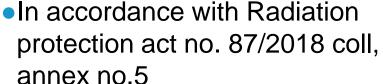
Medium-frequency induction furnace

Charge size – 2 tones –5 ingots

4 charges daily considered


Annual melting capacity
 1000 tones of scrap
 metal – 2500 ingots

Clearance monitoring concept



Surface activity measurement

$$\sum \alpha_{\text{max}} 0.1 \text{ Bq/cm}^2$$

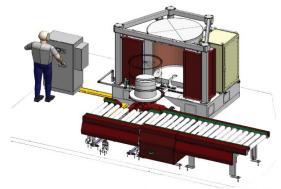
$$\sum \beta_{\text{max}}$$
 1,0 Bq/cm²

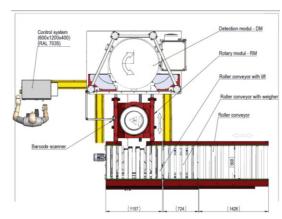
$$\frac{\sum \alpha [Bq/cm^{2}]}{0.1Bq/cm^{2}} + \frac{\sum \beta [Bq/cm^{2}]}{1Bq/cm^{2}} < 1$$

- Ingot surface 8000 cm²
- Clearance monitoring at 100% of surface with hand-held device

MDA Σα 0,02 Bq/cm²
Σβ 0,07 Bq/cm²
background 0,1 μSv/h, 60s background measurement, survey mode with 10s time constant

MDA $\Sigma\beta$ 0,13 Bq/cm² background 0,1 μ Sv/h, 60s background measurement, survey mode with 10s time constant




Mass activity measurement

- In accordance with Radiation protection act no. 87/2018 coll, annex no.5
- Mass activity measurement using gammascaner with 3 HPGe detectors
- Summation formula

$$\sum_{i=1}^{n} \frac{A_i}{A_{ui}} < 1$$

Segment gamma scanner WS310

Mass activity measurement

Determination of relevant RN a clearance levels

- Scrap metal from A1, V1 NPP
- Relevant RNs and CL for A1 metals adopted from decision of PHA SR No. OOZPŽ/7119/2011
- Relevant RNs and CL for V1 metals based on radiological characterization and Radiation protection act no. 87/2018

RN for A1 NPP		Half-life [y]
⁶⁰ Co	100	5.27
¹³⁴ Cs	100	2.06
¹³⁷ Cs	100	30
¹⁵² Eu	100	13.3
⁶³ Ni	100 000	96
⁹⁰ Sr	1 000	29.1
⁹⁹ Tc	1 000	213 000
^{239,240} Pu	100	24 100
²⁴¹ Am	100	432

RN for V1 NPP	Clearance level [Bq/kg]	Half-life [y]
⁶⁰ Co	100	5.27
¹³⁷ Cs	100	30
⁶³ Ni	100 000	96
⁹⁴ Nb	100	20 300
¹²⁵ Sb	100	2.77
²⁴¹ Am	100	432

- Suitable decontamination technology DF depends on metal contamination (RN)
- Possibility to significant reduce metallic RAW
- Melting facility under construction at present
- Suitable for metal contaminated with fission products and transuraniums

THANK YOU FOR YOUR ATTENTION!