

Dávid Košovský

Institute of Nuclear and Physical Engineering, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology in Bratislava, Ilkovičova 3, 812

Využitie spektroskopických metód na sledovanie mikroštruktúry reaktorových ocelí

Years in operation

Starnutie materiálov v primárnom okruhu

- Termomechanické namáhanie teplota, tlak,
- Cyklické napätie

STU FEI

- Vplyv korozívneho prostredia (N, H, He, C, S)
- Radiačná záťaž

Particle type (E _{kin} = 1 MeV)	Typical recoil (or PKA) feature	Typical recoil energy T	Dominant defect type		
Electron	PKA	25 eV	Frenkel pairs (Vacancy-		
Proton		500 eV	Insterstitial pair)		
Fe-ion		24 000 eV	Cascades & sub-cascades		
Neutron		45 000 eV	Transmutation		

5

Žiarením vyvolané zmeny vlastností

Tvorba Frenkelových párov vedie k: Zvýšenie hustoty dislokácií → krehnutie Tvorba dutín → napučiavanie (typické pre fcc oceľ) Zvýšená difúznosť → lokálna segregácia Amorfizácia alebo kryštalizácia → neočakávaná zmena fázy Plastická nestabilita – dislokačné tunely

1. 1

Transmutácia vedie k:

- Zvýšenie rádioaktivity
- Tvorba prvkov citlivejších na žiarenie zmeny termomechanických vlastností, korózia
- Tvorba H/He bublín, napr. 56 Fe(n, α) 53 Cr, 58 Ni(n, α) 55 Fe

ÚČINKY ŽIARENIA V OCELI INCONEL 718 - ZLIATINA 50Ni17Cr (FCC ŠTRUKTÚRA) PRI 50-200°C

4.6 dpa

Žíhanie – spôsob obnovenia vlastnosti materiálu

Možné spôsoby žíhania:

- "mokré" žíhanie bez odstránenia jadra
- "mokré" žíhanie s odstránením jadra
- malé zvýšenie teploty chladiva primárneho okruhu (napr. od 280 °C do 340 °C) – nízky vplyv, nízke náklady
- "suché" žíhanie s odstránením jadra
- výrazné zvýšenie teploty pomocou externých zdrojov tepla

Základné údaje regeneračného žíhania

Činnosť pozostáva z troch etáp:

1. etapa

- ohrev na pracovnú teplotu predpísanou rýchlosťou, zároveň dochádza k dosušeniu tlakovej nádoby reaktora

2. etapa

- výdrž na žíhacej teplote

3. etapa

- chladnutie po regeneračnom žíhaní predpísanou rýchlosťou

Priebeh teplôt počas regeneračného žíhania

Základný tepelný režim:

Pre reaktory typu VVER 440 je používaný nasledovný základný tepelný režim:

- teplota regeneračného žíhania 475°C ±30°C

- výdrž na teplote v trvaní 100 až 168 hodín
- podľa požiadaviek zákazníka
- rýchlosť náhrevu max. 20°C za hod. max. teplotný gradient: - axiálny 250°C/m - radiálny 50°C/m

 pokrytie oblasti zvarového spoja na každú stranu od jeho osi v šírke 300 mm

rýchlosť chladenia max. 30°C/hod.

6

Hmotnosť - strojná časť 62 330 kg elektrická časť 2 470 kg - spolu 64 800 kg

Inštalovaný príkon - 975 kW /13 pásiem po 75 kW/ Menovitý prúd Napájanie 3 x 380 V, 50 Hz

Year	Temperature/time (°C/h)			
1987	$430 \pm 20^{\circ}C / 150 h$			
1988	$450 + 50^{\circ}$ C / 150 h			
1988	475 - 10°C / 150 h			
1989	475°C / 150 h			
1989	475°C / 150 h			
1989	475°C / 150 h			
1989	475°C / 150 h			
1990	475 - 10°C / 150 h			
1990	475°C/150 h			
1991	$475 \pm 15^{\circ}$ C / 100 h			
1992	475°C / 150 h			
1992	475°C / 150 h			
1993	475 - 503°C / 160 h			
1993	475 - 496°C / 168 h			
	Year 1987 1988 1988 1989 1989 1989 1989 1989 1990 1990 1990 1990 1990 1991 1992 1992 1992 1993 1993			

1 490 A

ODS a RAFM ocele pre III+ gen. reaktorov

Sample	Chemical composition [wt. %]									
	Fe	Cr	С	Si	Mn	Mo	Ni	Ti	Y	
RAFM T91	89.90	8.32	0.09	0.15	0.48	0.86	0.10	-	-	
ODS PM2000	80.09	19.30	0.07	0.05	0.02	0.01	0.03	0.05	0.43	

Analýza ocelí pomocou MS - Binomické rozdelenie pre MEA ocele (T91)

Kosovsky et al.: Phys. Stat. Sol. (2022), 156, 18-27.

2

ODS PM2000 ocel'

(d)

(a)

200nm

HEA ocele pre špeciálne aplikácie v JE

Vzorky HEA ocele

- ribbons (rapid quenching)
- planar flow casting technique
- melt spun (1700 K)
- thickness 20 μm

STU FEI

20

Mechanické vlastnosti HEA zliatiny (FeCrAlNiMnB)

Perturbačný model pre bórovú HEA oceľ (pre HRK kazety)

(vzorka FeCrNiMnAlB) $B = B_0 + \langle \Delta B \rangle$ $B = B_0 + [m\Delta B_1^x + n\Delta B_2^x + \gamma x]$

Ďakujem za pozornosť

david.kosovsky@stuba.sk

This research was supported by the Scientific Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic [grant number VEGA 1/0130/20] and by the European Regional Development Fund-Project ''Centre for Advanced Applied Sciences'' [grant number CZ.02.1.01/0.0/0.0/16_019/0000778]. This research was supported thanks to the generous support under the Operational Program Integrated Infrastructure for the project: ''Research of physical, technical and material aspects of high-temperature reactors with the potential of hydrogen production'', Project no. 313011BUH7, co-financed by the European Regional Development Fund.''